V = 1498.5 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

 $0.2 \times 0.1 \times 0.08 \text{ mm}$

12705 measured reflections

1569 independent reflections

747 reflections with $I > 2\sigma(I)$

Z = 4

T = 296 K

 $R_{\rm int} = 0.122$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Lysergol monohydrate

Stefan Merkel, Robert Köppen, Matthias Koch, Franziska **Emmerling*** and Irene Nehls

BAM Federal Institute for Materials Research and Testing, Department Analytical Chemistry, Reference Materials, Richard-Willstätter-Strasse 11, D-12489 Berlin-Adlershof, Germany Correspondence e-mail: franziska.emmerling@bam.de

Received 11 January 2012; accepted 20 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.036; wR factor = 0.052; data-to-parameter ratio = 8.3.

In the title compound [systematic name: (7-methyl-4,6,6a,7,8,9hexahydroindolo[4,3,2-fg]quinoline-9-yl)methanol monohydrate], $C_{16}H_{18}N_2O \cdot H_2O$, the non-aromatic ring (ring C of the ergoline skeleton) directly fused to the aromatic rings is nearly planar, with a maximum deviation of 0.659 (3) Å, and shows an envelope conformation. In the crystal, hydrogen bonds between the lysergol and water molecules contribute to the formation of layers parallel to $(10\overline{2})$.

Related literature

For the natural occurrence of lysergol, see: Amor-Prats & Harborne (1993); Uhlig et al. (2007). For the crystal structures of other alkaloids produced by Clavicipitaceae see: Pakhomova et al. (1995); Merkel et al. (2010).

Experimental

Crystal data

 $C_{16}H_{18}N_2O \cdot H_2O$ $M_r = 272.34$ Orthorhombic, $P2_12_12_1$ a = 7.6234 (12) Å b = 12.3803 (19) Å c = 15.877 (2) Å

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001) $T_{\rm min} = 0.85, T_{\rm max} = 0.96$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	H atoms treated by a mixture of
$wR(F^2) = 0.052$	independent and constrained
S = 0.79	refinement
1569 reflections	$\Delta \rho_{\rm max} = 0.10 \ {\rm e} \ {\rm \AA}^{-3}$
188 parameters	$\Delta \rho_{\rm min} = -0.10 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table T			
Hvdrogen-bond	geometry	(Å.	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···O2 ⁱ	0.82	2.03	2.845 (3)	176
$N2-H2A\cdots O2^{ii}$	0.86	2.17	2.896 (4)	142
O2−H17···N1 ⁱⁱⁱ	0.84 (3)	2.00 (3)	2.826 (3)	171 (3)
$O2-H18\cdots O1^{iv}$	0.84 (3)	1.96 (2)	2.777 (3)	167 (3)
Symmetry codes:	(i) $-x + 1, y$	$+\frac{1}{2}, -z +\frac{3}{2};$ (ii	i) $x + \frac{1}{2}, -y + \frac{3}{2}$, -z + 1; (iii)

 $-x + \frac{3}{2}, -y + 2, z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, -y + \tilde{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001): cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2506).

References

Amor-Prats, D. & Harborne, J. B. (1993). Biochem. Syst. Ecol. 21, 455-462.

- Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Merkel, S., Köppen, R., Koch, M., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o2275.

Pakhomova, S., Ondráucek, J., Huusák, M., Kratochvíl, B., Jegorov, A. & Stuchlík, J. (1995). Acta Cryst. C51, 308-311.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Uhlig, S., Vikoren, T., Ivanova, L. & Handeland, K. (2007). Rapid Commun. Mass Spectrom. 21, 1651-1660.

supplementary materials

Acta Cryst. (2012). E68, o523 [doi:10.1107/S1600536812002632]

Lysergol monohydrate

S. Merkel, R. Köppen, M. Koch, F. Emmerling and I. Nehls

Comment

Lysergol is a clavine alkaloid produced by fungi of the family *Clavicipitaceae*. It naturally occurs in sclerotia and can be isolated from seeds of some species of the genus *Ipomoea* (Amor-Prats *et al.*, 1993). Lysergol has an ergoline skeleton and is therefore structurally related to ergot alkaloids like ergometrinine (Merkel *et al.*, 2010) or ergotamine (Pakhomova *et al.*, 1995).

The molecule crytsallizes in the orthorhombic space group $P2_12_12_1$. The molecular structure of the compound and the atom-labeling scheme are shown in Fig 1.

The absolute configuration could not be defined confidently based on the single-crystal diffraction data. It was however established based on liquid chromatography data that confirmed the epimeric purity of the obtained lysergol crystals. Each lysergol molecule forms four hydrogen bonds to four adjacent water molecules. As a consequence, each water molecule is involved in four hydrogen bonds to four lysergol molecules, resulting in a three dimentional framework structure.

Experimental

1.4 mg of epimeric pure lysergol (purity > 97%, HPLC-FLD), obtained from Sigma-Aldrich (Taufkirchen, Germany), were dissolved in a glass vial in 1.2 ml of a 84:16 (v:v) acetonitril:water solution. The vial was subsequently capped and stored in the dark at ambient temperature (approximately 23 °C) until crystal formation was complete (2 days). To avoid any epimerization of lysergol to isolysergol the epimeric purity of the resulted crystals was proofed by HPLC-FLD.

Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

The N—H and O—H hydrogen atoms were located in difference maps and and fixed in their found positions (AFIX 3) with U^{*}so~(H) = 1.2 of the parent atom U~eq~ or 1.5 U~eq~(C~methyl~, O).

Figures

Fig. 1. : *ORTEP* representation of the title compound with atomic labeling shown with 30% probability displacement ellipsoids.

Fig. 2. : View of the unit cell of the title compound along [100], showing the hydrogen bonds between the lysergol and adjacent water molecules. Hydrogen bonds are drawn as dashed green lines.

(7-methyl-4,6,6a,7,8,9-hexahydroindolo[4,3,2-fg]quinoline-9-yl)methanol monohydrate

Crystal data

$C_{16}H_{18}N_2O{\cdot}H_2O$	F(000) = 584
$M_r = 272.34$	$D_{\rm x} = 1.207 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 46 reflections
a = 7.6234 (12) Å	$\theta = 4-22^{\circ}$
b = 12.3803 (19) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.877 (2) Å	T = 296 K
$V = 1498.5 (4) \text{ Å}^3$	Needle, colourless
Z = 4	$0.2\times0.1\times0.08~mm$

Data collection

Bruker APEX CCD area-detector diffractometer	1569 independent reflections
Radiation source: fine-focus sealed tube	747 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.122$
$\omega/2\theta$ scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -9 \rightarrow 8$
$T_{\min} = 0.85, T_{\max} = 0.96$	$k = -13 \rightarrow 14$
12705 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.052$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.79	$w = 1/[\sigma^2(F_0^2) + (0.0045P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
1569 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
188 parameters	$\Delta \rho_{max} = 0.10 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.10 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates of	and isotropic of	r equivalent isotropic	: displacement par	cameters $(Å^2)$

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
O1	0.3895 (3)	1.17847 (16)	0.55746 (12)	0.0635 (7)
H1	0.4465	1.2344	0.5538	0.095*
N1	0.9193 (3)	0.95002 (18)	0.53144 (15)	0.0442 (7)
N2	0.8345 (5)	0.6912 (2)	0.21044 (17)	0.0648 (9)
H2A	0.8399	0.6452	0.1699	0.078*
C1	0.4962 (4)	1.0956 (2)	0.5939 (2)	0.0562 (9)
H1A	0.4266	1.0305	0.6000	0.067*
H1B	0.5326	1.1182	0.6497	0.067*
C2	0.6602 (4)	1.0695 (2)	0.5413 (2)	0.0477 (8)
H11	0.7270	1.1362	0.5326	0.057*
C3	0.7769 (4)	0.9876 (2)	0.5872 (2)	0.0521 (10)
H3A	0.8269	1.0210	0.6371	0.062*
H3B	0.7067	0.9264	0.6051	0.062*
C4	0.8463 (4)	0.8815 (2)	0.46293 (19)	0.0442 (8)
H4	0.8020	0.8151	0.4889	0.053*
C5	0.9912 (4)	0.8488 (2)	0.3992 (2)	0.0571 (10)
H5A	1.0518	0.9129	0.3795	0.068*

supplementary materials

H5B	1.0762	0.8025	0.4268	0.068*
C6	0.9116 (5)	0.7897 (3)	0.3247 (2)	0.0488 (9)
C7	0.9690 (5)	0.7142 (3)	0.2684 (2)	0.0627 (11)
H7	1.0799	0.6828	0.2684	0.075*
C8	0.6916 (6)	0.7556 (3)	0.2301 (2)	0.0541 (10)
C9	0.7374 (4)	0.8162 (3)	0.30186 (19)	0.0458 (9)
C10	0.6234 (5)	0.8872 (3)	0.34156 (19)	0.0457 (9)
C11	0.6897 (4)	0.9386 (3)	0.42089 (19)	0.0435 (9)
C12	0.6124 (4)	1.0234 (2)	0.4570 (2)	0.0514 (9)
H12	0.5216	1.0566	0.4276	0.062*
C13	0.4597 (4)	0.9014 (3)	0.30490 (19)	0.0596 (10)
H13	0.3807	0.9500	0.3284	0.072*
C14	0.4120 (5)	0.8423 (3)	0.2318 (2)	0.0637 (10)
H14	0.3014	0.8530	0.2085	0.076*
C15	0.5253 (6)	0.7691 (3)	0.1937 (2)	0.0678 (12)
H15	0.4922	0.7305	0.1460	0.081*
C16	1.0496 (4)	0.8895 (2)	0.58200 (19)	0.0682 (11)
H16A	0.9984	0.8231	0.6013	0.102*
H16B	1.0844	0.9322	0.6296	0.102*
H16C	1.1504	0.8739	0.5479	0.102*
02	0.4063 (3)	0.86910 (19)	0.96241 (15)	0.0648 (7)
H17	0.468 (4)	0.918 (2)	0.9836 (19)	0.097*
H18	0.327 (3)	0.847 (3)	0.9945 (17)	0.097*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0514 (16)	0.0583 (16)	0.0807 (18)	0.0025 (14)	-0.0038 (13)	-0.0068 (13)
N1	0.0467 (19)	0.0461 (17)	0.0398 (17)	0.0035 (15)	-0.0078 (16)	0.0001 (15)
N2	0.090 (3)	0.050 (2)	0.055 (2)	0.003 (2)	0.005 (2)	-0.0091 (16)
C1	0.055 (3)	0.055 (2)	0.058 (2)	0.004 (2)	0.005 (2)	-0.0022 (19)
C2	0.053 (2)	0.044 (2)	0.046 (2)	0.0011 (18)	0.0011 (19)	0.0009 (19)
C3	0.065 (3)	0.047 (2)	0.044 (2)	-0.003 (2)	-0.001 (2)	-0.0040 (18)
C4	0.047 (2)	0.041 (2)	0.045 (2)	-0.0003 (17)	-0.0002 (19)	0.0014 (19)
C5	0.054 (3)	0.059 (2)	0.058 (2)	0.0101 (19)	-0.001 (2)	-0.0029 (19)
C6	0.059 (3)	0.048 (2)	0.040 (2)	0.005 (2)	0.004 (2)	-0.0014 (18)
C7	0.070 (3)	0.063 (3)	0.055 (2)	0.009 (2)	-0.001 (2)	0.001 (2)
C8	0.065 (3)	0.054 (3)	0.043 (2)	-0.006 (2)	0.001 (2)	-0.001 (2)
C9	0.048 (3)	0.055 (3)	0.034 (2)	-0.006 (2)	-0.005 (2)	0.0015 (19)
C10	0.047 (3)	0.053 (2)	0.038 (2)	-0.006 (2)	-0.0012 (19)	0.0022 (18)
C11	0.044 (2)	0.044 (2)	0.043 (2)	0.0015 (18)	0.0029 (18)	0.0008 (18)
C12	0.053 (2)	0.052 (2)	0.049 (2)	0.0046 (19)	-0.001 (2)	0.0075 (18)
C13	0.056 (3)	0.069 (3)	0.053 (3)	0.000 (2)	-0.007 (2)	-0.005 (2)
C14	0.055 (3)	0.075 (3)	0.061 (3)	-0.008 (3)	-0.013 (2)	-0.002 (2)
C15	0.087 (4)	0.067 (3)	0.049 (3)	-0.016 (3)	-0.001 (3)	-0.003 (2)
C16	0.074 (3)	0.066 (3)	0.065 (2)	0.012 (2)	-0.025 (2)	0.002 (2)
02	0.071 (2)	0.0660 (18)	0.0570 (16)	-0.0169 (14)	0.0090 (14)	-0.0127 (14)

Geometric parameters (Å, °)

01—C1	1.432 (3)	С5—Н5В	0.9700
O1—H1	0.8200	C6—C7	1.365 (4)
N1—C3	1.476 (3)	С6—С9	1.415 (4)
N1—C16	1.481 (3)	С7—Н7	0.9300
N1—C4	1.487 (3)	C8—C15	1.403 (4)
N2—C8	1.385 (4)	C8—C9	1.408 (4)
N2—C7	1.407 (4)	C9—C10	1.388 (4)
N2—H2A	0.8600	C10—C13	1.388 (4)
C1—C2	1.538 (3)	C10-C11	1.499 (4)
C1—H1A	0.9700	C11—C12	1.333 (3)
C1—H1B	0.9700	C12—H12	0.9300
C2—C12	1.500 (4)	C13—C14	1.420 (4)
C2—C3	1.534 (4)	С13—Н13	0.9300
С2—Н11	0.9800	C14—C15	1.390 (4)
С3—НЗА	0.9700	C14—H14	0.9300
С3—Н3В	0.9700	C15—H15	0.9300
C4—C11	1.540 (4)	C16—H16A	0.9600
C4—C5	1.552 (4)	C16—H16B	0.9600
C4—H4	0.9800	C16—H16C	0.9600
C5—C6	1.517 (4)	O2—H17	0.838 (10)
С5—Н5А	0.9700	O2—H18	0.837 (10)
C1—O1—H1	109.5	C7—C6—C9	107.0 (3)
C3—N1—C16	109.1 (2)	C7—C6—C5	135.4 (4)
C3—N1—C4	110.1 (2)	C9—C6—C5	117.6 (3)
C16—N1—C4	111.0 (2)	C6—C7—N2	109.4 (3)
C8—N2—C7	108.0 (3)	С6—С7—Н7	125.3
C8—N2—H2A	126.0	N2—C7—H7	125.3
C7—N2—H2A	126.0	N2-C8-C15	133.3 (4)
O1—C1—C2	113.1 (3)	N2—C8—C9	107.1 (3)
O1—C1—H1A	109.0	C15—C8—C9	119.6 (4)
C2—C1—H1A	109.0	C10—C9—C8	123.3 (4)
O1—C1—H1B	109.0	C10-C9-C6	128.2 (3)
C2—C1—H1B	109.0	C8—C9—C6	108.4 (3)
H1A—C1—H1B	107.8	C9—C10—C13	116.9 (3)
C12—C2—C3	108.3 (2)	C9—C10—C11	116.1 (3)
C12—C2—C1	111.5 (3)	C13—C10—C11	127.0 (3)
C3—C2—C1	110.6 (3)	C12—C11—C10	123.1 (3)
C12—C2—H11	108.8	C12—C11—C4	121.2 (3)
C3—C2—H11	108.8	C10-C11-C4	115.5 (3)
C1—C2—H11	108.8	C11—C12—C2	125.1 (3)
N1—C3—C2	110.4 (3)	C11—C12—H12	117.4
N1—C3—H3A	109.6	C2—C12—H12	117.4
С2—С3—НЗА	109.6	C10—C13—C14	120.5 (3)
N1—C3—H3B	109.6	C10—C13—H13	119.7
С2—С3—Н3В	109.6	C14—C13—H13	119.7
НЗА—СЗ—НЗВ	108.1	C15—C14—C13	122.2 (4)

supplementary materials

N1—C4—C11	110.2 (2)	C15-C14-H14	118.9
N1—C4—C5	111.1 (2)	C13—C14—H14	118.9
C11—C4—C5	112.9 (3)	C14—C15—C8	117.4 (4)
N1—C4—H4	107.5	C14—C15—H15	121.3
C11—C4—H4	107.5	C8—C15—H15	121.3
С5—С4—Н4	107.5	N1-C16-H16A	109.5
C6—C5—C4	110.5 (3)	N1-C16-H16B	109.5
С6—С5—Н5А	109.6	H16A—C16—H16B	109.5
С4—С5—Н5А	109.6	N1-C16-H16C	109.5
С6—С5—Н5В	109.6	H16A—C16—H16C	109.5
C4—C5—H5B	109.6	H16B—C16—H16C	109.5
H5A—C5—H5B	108.1	H17—O2—H18	114 (3)
O1—C1—C2—C12	-64.4 (3)	C7—C6—C9—C8	-0.4 (4)
O1—C1—C2—C3	175.0 (2)	C5—C6—C9—C8	177.9 (3)
C16—N1—C3—C2	168.4 (2)	C8—C9—C10—C13	-3.2 (5)
C4—N1—C3—C2	-69.5 (3)	C6—C9—C10—C13	178.2 (3)
C12—C2—C3—N1	48.7 (3)	C8—C9—C10—C11	175.5 (3)
C1—C2—C3—N1	171.3 (2)	C6-C9-C10-C11	-3.1 (5)
C3—N1—C4—C11	49.4 (3)	C9-C10-C11-C12	166.3 (3)
C16—N1—C4—C11	170.4 (2)	C13-C10-C11-C12	-15.2 (5)
C3—N1—C4—C5	175.3 (2)	C9—C10—C11—C4	-18.4 (4)
C16—N1—C4—C5	-63.8 (3)	C13—C10—C11—C4	160.1 (3)
N1-C4-C5-C6	-173.7 (2)	N1-C4-C11-C12	-14.6 (4)
C11—C4—C5—C6	-49.3 (3)	C5-C4-C11-C12	-139.5 (3)
C4—C5—C6—C7	-152.8 (4)	N1-C4-C11-C10	170.0 (2)
C4—C5—C6—C9	29.4 (4)	C5-C4-C11-C10	45.1 (4)
C9—C6—C7—N2	-0.5 (4)	C10-C11-C12-C2	172.3 (3)
C5—C6—C7—N2	-178.5 (3)	C4—C11—C12—C2	-2.7 (5)
C8—N2—C7—C6	1.3 (4)	C3—C2—C12—C11	-14.0 (4)
C7—N2—C8—C15	178.3 (4)	C1-C2-C12-C11	-136.0 (3)
C7—N2—C8—C9	-1.5 (4)	C9—C10—C13—C14	2.0 (5)
N2-C8-C9-C10	-177.6 (3)	C11-C10-C13-C14	-176.5 (3)
C15—C8—C9—C10	2.5 (5)	C10-C13-C14-C15	-0.3 (5)
N2—C8—C9—C6	1.2 (4)	C13-C14-C15-C8	-0.4 (5)
C15—C8—C9—C6	-178.6 (3)	N2-C8-C15-C14	179.6 (3)
C7—C6—C9—C10	178.4 (3)	C9—C8—C15—C14	-0.6 (5)
C5—C6—C9—C10	-3.3 (5)		
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
$O1$ — $H1$ ··· $O2^{i}$	0.82	2.03	2.845 (3)	176
N2—H2A···O2 ⁱⁱ	0.86	2.17	2.896 (4)	142
O2—H17···N1 ⁱⁱⁱ	0.84 (3)	2.00 (3)	2.826 (3)	171 (3)
O2—H18···O1 ^{iv}	0.84 (3)	1.96 (2)	2.777 (3)	167 (3)
Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+3/2$; (ii) $x+1/2$, $-y+3/2$, $-z+1$; (iii) $-x+3/2$, $-y+2$, $z+1/2$; (iv) $-x+1/2$, $-y+2$, $z+1/2$.				

Fig. 1

